MN35503

D/A Converter for Digital Audio Equipment

Overview

The MN35503 is a CMOS digital-to-analog converter designed especially for PCM digital audio equipment. It features a built-in digital filter with 16/20-bit input.

It uses pulse edge modulation (PEM) and JVC advanced noise shaping (VANS) to yield the high resolution and low distortion ratio equivalent to those of 20-bit systems covering the range between 0 and 20 kHz.

The chip incorporating an 8-fold oversampling digital filter that eliminates a low-pass filter after the D/A converter and greatly reduces the power consumption of the overall D/A conversion system.

The chip makes a major contribution to reducing the cost and size of CD players and other digital audio equipment.

Features

- Built-in 8-fold oversampling digital filter using I²S bus
- \bullet Bandwidth ripple: within $\pm 0.05~dB$ for 0 to 0.454 f_s
- \bullet Cutoff band attenuation (0.546 to 7.454) f_s : 37dB

 $(n-0.03125) f_s$ to $(n+0.03125) f_s$: min. 60dB

n=1 to 7 (integer)

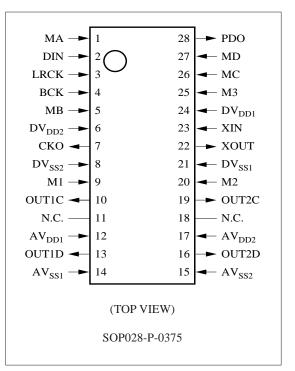
(The above characteristics include those for an external primary low-pass filter with $f_s=1.95 f_s$.)

• Built-in digital de-emphasis

 $f_{s}{=}32.0 \ \text{kHz} \ 0 \ \text{to}14.5 \ \text{kHz} \ \text{max. deviation} \\ +0.072 \text{dB}/-0.047 \ \text{dB}$

 $f_s{=}44.1~kHz~0$ to 20 ~kHz max. deviation +0.077 dB/-0.028~dB

 $f_s{=}48.0~kHz~0$ to 21.8 kHz max. deviation +0.052dB/-0.053~dB


(The above characteristics include those for an external primary low-pass filter with f_c =1.95 f_{s} .)

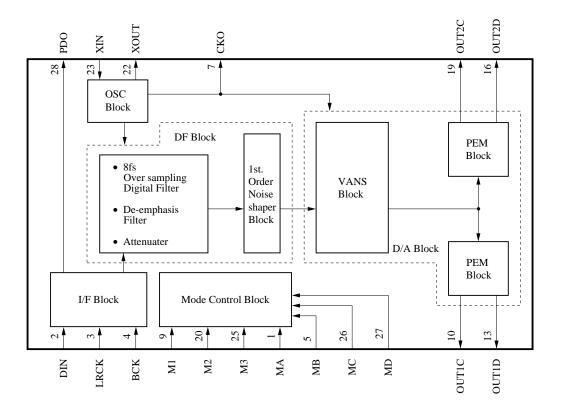
- The digital filter is designed to deliver the above bandwidth characteristics when used with an external primary low-pass filter with f_c=1.95 f_s.
- Built-in digital attenuation

Up/down over 32 steps

- Support for double-speed operation (192 f_s clock)
- 4PEM output configuration (2PEM output per channel)
- Support for low-voltage (3.0 volt) operation

Pin Assignment

• Choice of system clocks:


 $192f_{s}$, $256f_{s}$, $384f_{s}$, $512f_{s}$, $576f_{s}$

- Choice of input data formats: right-packed or I²S bus (16 or 20 bits, alternating channel input, MSB first)
- Built-in phase comparator

Applications

• CD players and other digital audio equipment

Block Diagram

Pin Descriptions

Pin No.	Symbol	Function Description	
1	MA	Operating mode selection pin 4	(See Table 1.)
2	DIN	Serial data input pin (MSB first)	
3	LRCK	LR synchronization signal input pin (f _s rate)	
4	BCK	Data shift bit clock input pin	
5	MB	Operating mode selection pin 5	(See Table 1.)
6	DV _{DD2}	Power supply pin 2 for digital circuits	
7	СКО	Clock output pin	
8	DV _{SS2}	Ground pin 2 for digital circuits	
9	M1	Operating mode selection pin 1, with pull-up resistor	(See Table 1.)
10	OUT1C	PEM output pin 1C (Left channel with reversed phase)	
11	N.C.	No connection (Leave this pin open.)	
12	AV _{DD1}	Power supply pin 1 for analog circuits	
13	OUT1D	PEM output pin 1D (Left channel with reversed phase)	
14	AV _{SS1}	Ground pin 1 for analog circuits	
15	AV _{SS2}	Ground pin 2 for analog circuits	
16	OUT2D	PEM output pin 2D (Right channel with reversed phase)	
17	AV _{DD2}	Power supply pin 2 for analog circuits	
18	N.C.	No connection (Leave this pin open.)	
19	OUT2C	PEM output pin 2C (Right channel with reversed phase)	
20	M2	Operating mode selection pin 2, with pull-up resistor	(See Table 1.)
21	DV _{SS1}	Ground pin 1 for digital circuits (Ground for oscillator circuit)	
22	XOUT	Crystal oscillator pin	
23	XIN	Crystal oscillator pin (external clock input pin) (Built-in feedba	ack resistor)
24	DV _{DD1}	Power supply pin 1 for digital circuits (for oscillation circu	uit)
25	M3	Operating mode selection pin 3	(See Table 1.)
26	МС	Reset pin/digital attenuation control pin	(See Table 1.)
27	MD	Reset pin/digital attenuation control pin	(See Table 1.)
28	PDO	Phase comparator output pin (tristate output)*1	

Note*1: This pin provides tristate output indicating the result of comparing the phases of the internal f_s-rate-signal and the LRCK input signal. It is at "H" level when the LRCK signal leads and is at "L" level when the signal lags. At all other times, it is in the high-impedance state.

Operating Mode Descriptions

Mode Selection Pins Pin States and Operating Modes														
						11 3	ale	5 8110	L	IVIOUES				
M1 Includes pull-up resistor									L					
M2 Includes pull-up resistor		L							Н					
M3		Ι	-			Н			L	Н				
MA	Ι	L H				L H		ł	MDAT		L		H	I
MB	L	L H L H			L	Н	L	Н	MCLK		L	Н	L	Н
MC				RSB	UP				ML	ΑT		RSBUP		
MD				RSB	DN				L	Н		RS	BDI	Ν
MODE	00	01	02	03	10	11	12	13	20	21	30	31	32	33
							Serial							
Input data form	Right-packed													
Input word length (bits)		16												
LRCK level for left channel data		Н												
					*1		*2	*2	*2					
XIN clock frequency (f _s)	384			192		576		384/576	256/384	256				
								See Table 3.	See Table 3.					
		384			192		57		384/576	256/384	(TOD		<u>,</u>	
CKO output frequency (f_s)		30	54			92	5/	0	See Table 3.	See Table 3.	STOP .			
DE-EMP. (f _s =[kHz])	_	44.1	32	48	-	44.1	-	32	See Ta	able 3	_	44.1	32	48
Output level					0.59	8×10^{10}	AV _D	D		$448 \times AV_{DD}$				
VANS oversampling (f _s)		6	4		3	2	9	96	64/96	64/96		6	4	
Theoretical signal-to-noise ratio (dB)		12	22		95		13	88	122/138	116/132	116			

Table 1-1. MN35503 Operating Modes

Notes

*1: During 192 f_s operation, the chip supports fs clock speeds up to 88.2 kHz.

*2: During 576 f_s operation and 384 f_s operation in modes 2₁ or 6₁, the chip supports f_s clock speeds up to 32 kHz; for other modes, it supports up to 48 kHz.

Mode Selection Pins Pin States and Operating Modes														
M1 Includes pull-up resistor								ł	H					
M2 Includes pull-up resistor	L								Н					
M3]	L	Н			I L			Н		Ι		
MA]	L	I	Η	I	_	l	Η	MD	AT		L		H
MB	L	L H L			L	Н	L	Н	MC	LK	L	Н	L	Н
MC				RSB	UP				ML	AT	RSBUP			
MD				RSB	DN				L	Н	RSBDN			
MODE	40	41	42	43	50	51	52	53	60	61	70	71	72	73
									Serial	mode				
Input data form		Right-packed					I ² S			Right-packed				
Input word length (bits)		16				20			to 20	16 20		20		
LRCK level for left channel data	L				H	ł			L			Η		
				*1				*1	*1	*1				e
XIN clock frequency (f_s)	384		576	5 384			576	384/576	256/384	512			Mod	
									See Table 3.	See Table 3.				Test Mode
CKO output frequency (f_s)		STOP	384	STOP		384		576	384/576	256/384		512		F
	504	5101	504	5101		504		570	See Table 3.	See Table 3.		512		
DE-EMP.(f _s =[kHz])	_	48	44.1	32	_	44.1	-	_	See Ta	ble 3.	-	44.1	-	
Output level					0		0.598 × A		V _{DD} 0.44		$48 \times AV_{DD}$			
VANS oversampling (f _s)		64		94	6	4	9	6	64/96	64/96		64		
Theoretical signal-to-noise ratio (dB)		122		138	12	22	138		122/138	116/132	122			

Table 1-2. MN35503 Operating Modes

Note*1: During 576 f_s operation and 384 f_s operation in modes 2_1 or 6_1 , the chip supports f_s clock speeds up to 32 kHz; for other modes, it supports up to 48 kHz.

• Serial Mode (MODE=20, 21, 60, 61)

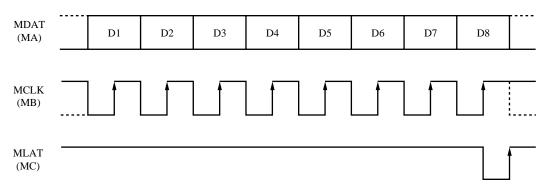


Figure 1. Serial Mode Input Signal Timing

Table 2. Attenuation Control

The 5-bit from D1 (MSB) to D5 (LSB) specifies a code of the 32 available attenuation step. (See Table 2.)

D1	D2	D3	D4	D5	Code	Output Level (dB)
0	0	0	0	0	00H	0.0
0	0	0	0	1	01H	-1.0
	-	-	-		-	
0	0	0	1	0	02H	-2.0
		:			•	•
		•			•	•
1	1	1	1	0	1EH	- 48.1
1	1	1	1	1	1FH	-∞ (mute)
	0=L,	1=H				

Table 3. Mode Control

The combination of 3-bit from pins D6 to D8 controls XIN clock frequency, de-emphasis, and reset operation.

			XIN Clock F	-requency [fs]	DE-EMP.	Reset
D6	D7	D8	at MD=L	at MD=H	f _s =[kHz]	●: Reset —: Normal
0	0	0	384	256	OFF	
0	0	1	384	256	32	
0	1	0	384	256	OFF	•
0	1	1	576	384	32	
1	0	0	384	256	44.1	—
1	0	1	384	256	48	
1	1	0	576	384	OFF	•
1	1	1	576	384	OFF	
0-I	1-H	MD-I ·	MODE-2. 6.		•	

0=L, 1=H MD=L: MODE=2₀, 6₀ MD=H: MODE=2₁, 6₁ • Digital attenuation and reset (Parallel mode)

Table 4 shows how the inputs from the two pins MC (RSBUP) and MD (RSBDN) control digital attenuation except the serial modes.

Pin Name		Pin States	s and Operating Modes				
MC (RSBUP)	L	$\uparrow\downarrow$	L	\uparrow	Н		
MD (RSBDN)	RSBDN) L		↑ (Н	\uparrow		
Mode	Reset	Mute	Normal	Attenuatio	on control		
Volume	VolumeMute $(-\infty)$			UP	DOWN		

Table 4. Attenuation Modes

Note: The upward arrow indicates the rising edge change of the input signal; the paired arrows, the rising and falling edge changes.

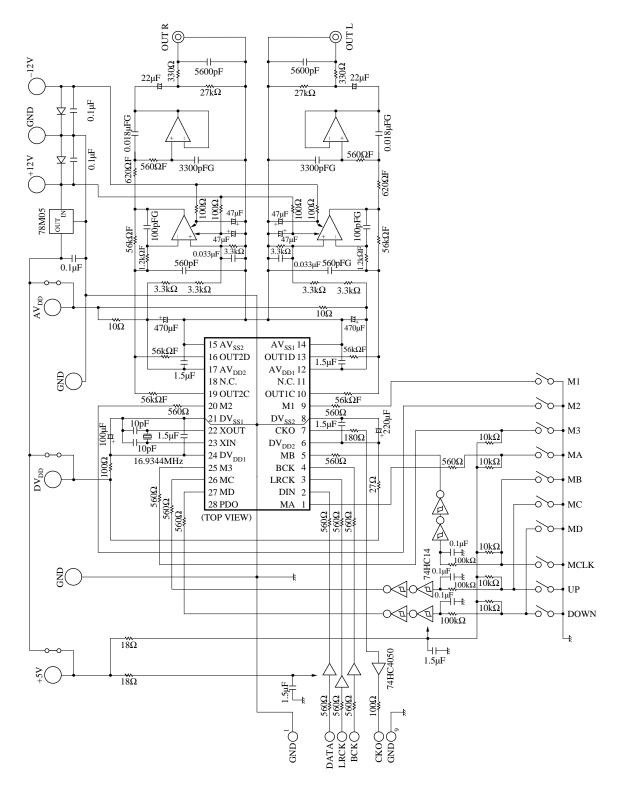
There are a total of 32 attenuation levels.

According to the attenuation control shown in Table-4, volume goes up or down in one step every input-signal rising-edge. Still, in the 0 dB state, up-pulse does not change the volume. Similary, in the muting state ($-\infty$), down-pulse does not change the volume.

The change of the input signals is detected by inner clock of 16 f_s period, so always use a frequency of 8 f_s or less for changes in the RSBUP and RSBDN signals. Note, however, that changes in attenuation level require a period corresponding to 2 f_s to complete.

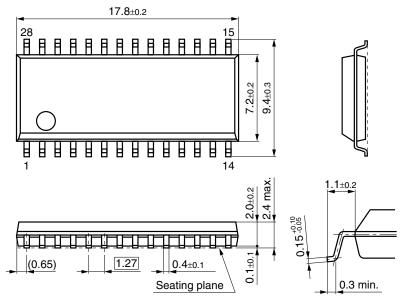
Do not simultaneously change the RSBUP and RSBDN signals unless setting up for a reset.

Conversion Characteristics

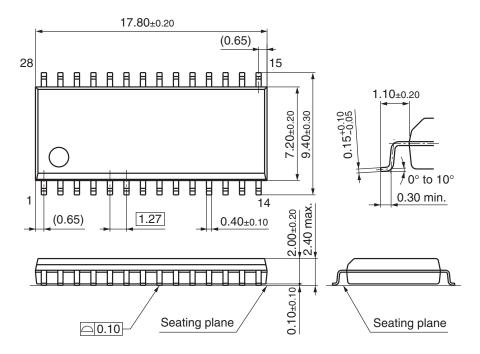

DV_{DD}=5.0V, DV_{SS}=0V, AV_{DD}=5.0V, AVss=0V, f=16.9344MHz, Ta=25°C

Analog Characteristics for 20-bit, 1 f_s input

Parameter	Symbol	Test Condition	min	typ	max	Unit
Signal-to-noise ratio		EIAJ (1kHz)		108		dB
Dynamic range	D.R.	EIAJ (1kHz)		107		dB
Total harmonic distortion	THD+N	EIAJ (1kHz)		0.0008	0.0015	%
Output level		1 kHz full scale		2.0		V _{rms}


The above analog characteristics are based on measurements with the sample application circuit using mode 5_0 .

Application Circuit Example


Package Dimensions (Unit: mm)

SOP028-P-0375

Note) The package of this product will be changed to the following lead-free type (SOP028-P-0375D).

- New Package Dimensions (Unit: mm)
- SOP028-P-0375D (Lead-free package)

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.