1.5 A, Step-Up/Down/Inverting Switching Regulators

GENERAL DESCRIPTION

The FP34063 is a monolithic control circuit containing the primary functions required for DC-to-DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down and Step-Up and Voltage Inverting applications with a minimum number of external components.

FEATURES

I Operation from 3.0 V to 30 V Input
I Low Standby Current
I Current Limiting
I Output Switch Current to 1.5 A
I Output Voltage Adjustable
I Frequency Operation to 100 kHz
| Precision 2\% Reference

SOP8

I SOP8 Package

APPLICATION

I DC to DC Converter

FUNCTIONAL BLOCK DIAGRAM

Name	No.	I/O	Description
SC	1	I	Switch Collector
SE	2	O	Switch Emitter
TC	3	I	Oscillator Timing Capacitor
GND	4	P	IC ground
IN-	5	I	Feedback Comparator Inverting Input
VCC	6	P	IC Power Supply
IPK	7	I	Current Sense Input
DC	8	I	Driver Collector

ORDER INFORMATION

Part Number	Operating Temperature	Package	Description
FP34063DR-LF	$-25^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$	SOP8	Tape \& Reel
FP34063D-LF	$-25^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$	SOP8	Tube
FP33063DR-LF	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$	SOP8	Tape \& Reel
FP33063D-LF	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$	SOP8	Tube

IC DATE CODE DISTINGUISH

FOR EXAMPLE:

January	A (Front Half Month), B (Last Half Month)
February	C, D
March	E, F -----------And so on.

Lot Number is the last two numbers

For Example:

A 3311 C 62

Switch Collector Voltage 30V
Switch Emitter Voltage 30 V
Switch Collector to Emitter Voltage 30 V
Driver Collector Voltage 30 V
Driver Collector Current 100 mA
Switch Current 1.5A
Power Dissipation (SOP8, $\mathrm{Ta}=25^{\circ} \mathrm{C}$) 600 mW
Operation Junction Temperature $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$
Operation Ambient Temperature Range(FP33063) $-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
(FP34063) $-25^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
SOP8 Lead Temperature (soldering, 10 sec) $+260^{\circ} \mathrm{C}$

IR Re-flow Temperature vs. Second Curve

Note:

1. Maximum package power dissipation limits must be observed.

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-25^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}\right.$, unless otherwise noted) OSCILLATOR

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Frequency	$\mathrm{f}_{\text {osc }}$	$\begin{gathered} \mathrm{V}_{\mathrm{PIN} 5}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}, \\ \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \end{gathered}$	24	33	42	KHz
Charge Current	$\mathrm{I}_{\text {chg }}$	Vcc=5V $\sim 30 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	24	35	42	uA
Discharge Current	$l_{\text {dischg }}$	$\mathrm{Vcc}=5 \mathrm{~V} \sim 30 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	140	220	260	uA
Discharge to Charge Current Ratio	Idischg/ıchg	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	5.2	6.5	7.5	-
Current Limit Sense Voltage	$\mathrm{V}_{\text {IPK(SENSE) }}$	$I_{\text {dischg }}=l_{\text {chg }}, \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	250	300	380	mV

OUTPUT SWITCH

Saturation Voltage (Darlington Connection)	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~A}$, Pins 1,8 connected	-	1.0	1.3	V
Saturation Voltage	$\mathrm{V}_{\mathrm{CE}(\text { sat })}$	$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~A}, \mathrm{R}_{\text {PIN } 8}=82 \Omega$ to $\mathrm{Vcc}, \mathrm{Forced} \beta \approx 20$	-	0.45	0.7	V
DC Current Gain	h_{FE}	$\mathrm{I}_{\mathrm{SW}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}}$	50	75	-	-
Collector Off-State Current	$\mathrm{I}_{\mathrm{C} \text { (off) }}$	$\mathrm{V}_{\mathrm{CE}=30 \mathrm{~V}}$		0.1	100	uA

COMPARATOR

Threshold Voltage	Vth	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	1.225	1.25	1.275	V
		$\mathrm{~T}_{\mathrm{a}}=-25^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$	1.21	-	1.29	-
Threshold Voltage Line Regulation	Regline	$\mathrm{Vcc}=3 \mathrm{~V} \sim 30 \mathrm{~V}$	-	2	-	mV
Input Bias Current	I_{B}	$\mathrm{V}_{\mathbb{N}-}=0 \mathrm{~V}$	-	-20	-400	nA

TOTAL DEVICE

Supply Current	I_{cc}	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \sim 30 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}$, Pin7=Vcc, $\mathrm{V}_{\text {Pin5 }}>\mathrm{Vth}$, Pin2=GND,others open	-	2	4	mA

2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
3. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (\leqq 300 mA) and high driver currents($\geqq 30 \mathrm{~mA}$), it may take up to $2.0 \mu \mathrm{~s}$ for it to come out of saturation. This condition will shorten the off time at frequencies $\geqq 30 \mathrm{kHz}$,and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If anon-Darlington configuration is used, the following output drive condition is recommended:

Forced of output switch : $\frac{I c_{\text {output }}}{I c_{\text {driver }}-7.0 m A^{*}} \geq 10$

[^0]
TYPICAL CHARACTERISTICS $\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}\right.$)

APPLICATION NOTE

Step-Down Converter

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\mathbb{I N}}=12 \mathrm{~V}$ to $24 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	$12 \mathrm{mV}= \pm 0.2 \%$
Load Regulation	$\mathrm{V}_{\mathbb{I N}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$ to 500 mA	$3.0 \mathrm{mV}= \pm 0.05 \%$
Output Ripple	$\mathrm{V}_{\mathbb{I}}=24, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	160 mVpp
Efficiency	$\mathrm{V}_{\mathbb{I N}}=24, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	82%

Step-Up Converter

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\mathbb{I N}=9.0 \mathrm{~V} \text { to } 12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}}^{20 \mathrm{mV}= \pm 0.035 \%}$	
Load Regulation	$\mathrm{V}_{\mathbb{I}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$ to 200 mA	$15 \mathrm{mV}= \pm 0.035 \%$
Output Ripple	$\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}$	500 mV pp
Efficiency	$\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}$	80%

Voltage Inverting Converter

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\mathbb{N}}=4.5 \mathrm{~V}$ to $6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	$20 \mathrm{mV}= \pm 0.08 \%$
Load Regulation	$\mathrm{V}_{\mathbb{N}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA}$ to 100 mA	$30 \mathrm{mV}= \pm 0.12 \%$
Output Ripple	$\mathrm{V}_{\mathbb{N}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	500 mVpp
Efficiency	$\mathrm{V}_{\mathbb{N}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	60%

Design Formula Table

Calculation	Step-Up	Step-Down	Voltage-Inverting
$\mathrm{ton} / \mathrm{toff}$	$\frac{V_{\text {OUT }}+V_{F}-V_{I N(M I N)}}{V_{I N(M I N)}-V_{S A T}}$	$\frac{V_{\text {OUT }}+V_{F}}{V_{I N(M I N)}-V_{S A T}-V_{\text {OUT }}}$	$\frac{\left\|V_{\text {OUT }}\right\|+V_{F}}{V_{I N}-V_{S A T}}$
($\mathrm{ton}_{\text {on }}+\mathrm{t}_{\text {off }}$)	$\frac{1}{f}$	$\frac{1}{f}$	$\frac{1}{f}$
$\mathrm{t}_{\text {off }}$	$\frac{t_{o n}+t_{o f f}}{\frac{t_{o n}}{t_{o f f}}+1}$	$\frac{t_{o n}+t_{o f f}}{\frac{t_{o n}}{t_{o f f}}+1}$	$\frac{t_{o n}+t_{o f f}}{\frac{t_{o n}}{t_{o f f}}+1}$
$\mathrm{t}_{\text {on }}$	$\left(t_{\text {on }}+t_{\text {off }}\right)-t_{\text {off }}$	$\left(t_{\text {on }}+t_{\text {off }}\right)-t_{\text {off }}$	$\left(t_{\text {on }}+t_{\text {off }}\right)-t_{\text {off }}$
$\mathrm{C}_{\text {T }}$	$4.0 * 10^{-5} t_{\text {on }}$	$4.0 * 10^{-5} t_{\text {on }}$	$4.0 * 10^{-5} t_{\text {on }}$
$\mathrm{IPK}($ SWITCH)	$2 I_{\text {out(max) }}\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right)$	$2 I_{\text {out (max) }}$	$2 I_{\text {out (max) }}\left(\frac{t_{\text {on }}}{t_{\text {off }}}+1\right)$
$\mathrm{R}_{\text {SC }}$	$0.3 / I_{\text {PK(SWITCH })}$	$0.3 / I_{\text {PK(SWITCH })}$	$0.3 / I_{\text {PK (SWITCH) }}$
$\mathrm{L}_{\text {(MIN }}$	$\left(\frac{V_{i n(\text { min }}-V_{\text {sat }}}{I_{p k(\text { swich })}}\right)_{o n(\text { max })}$	$\left(\frac{V_{\text {in(} \text { min }}-V_{\text {sat }}-V_{\text {out }}}{I_{p k(\text { switch })}}\right)_{\text {on(} \text { max })}$	$\left(\frac{V_{i n(\text { min }}-V_{\text {sat }}}{I_{p k(\text { switch })}}\right)_{o o n(\text { max })}$
Co	$9 \frac{I_{\text {out }} t_{\text {on }}}{V_{\text {ripple(}(p p)}}$	$\frac{I_{P K(S W I T C H)}\left(t_{O N}+t_{\text {OFF }}\right)}{8 V_{\text {ripple }(p p)}}$	$9 \frac{I_{\text {out }} t_{\text {ov }}}{V_{\text {ripple(pp })}}$

$\mathrm{V}_{\text {sat }}=$ Saturation voltage of the output switch.
$V_{F}=$ Forward voltage drop of the output rectifier.
$V_{\text {in }} \ddagger$ Nominal input voltage.
$\vee_{\text {out }} \ddagger$ Desired output voltage, \mid Vout $\left\lvert\,=1.25\left(1+\frac{R 2}{R 1}\right)\right.$
$I_{\text {out }} \ddagger$ Desired output voltage.
$\mathrm{f}_{\text {min }} \ddagger$ Minimum desired output switching frequency at the selected values of $\mathrm{V}_{\text {in }}$ and I_{o}.
$\mathrm{V}_{\text {ripple(pp) }} \ddagger$ Desired peak to peak output ripple voltage. In practice,the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load requlation.

PACKAGE OUTLINE

SOP8

SYMBOLS	MIN	MAX
A	0.053	0.069
A1	0.004	0.010
D	0.189	0.196
E	0.150	0.157
H	0.228	0.244
L	0.016	0.050
θ°	0	8

UNIT:INCH

NOTE:

1. JEDEC OUTLINE:MS-012 AA。
2. DIMENSIONS "D" DOES NOT INCLUDE MOLD FLASH,PROTRUSIONS OR GATE BURRS.MOLD FLASH,PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED .15mm (.0.06in) PER SIDE 。
3. DIMENSIONS "E" DOES NOT INCLUDE INTER-LEAD FLASH,OR PROTRUSIONS INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED .25mm (.0.10in) PER SIDE

PACKING SPECIFICATIONS

BOX \& CARTON DIMENSION

SOP8

SOP8

PACKING QUANTITY SPECIFICATIONS

SOP8
2500 EA / REEL
1 REELS / INSIDE BOX
4 INSIDE BOXES / CARTON

LABEL SPECIFICATIONS

TAPPING \& REEL

CARTON

Feeling Technology Corp	
Product Type: FP34063DR-LF	
Lot No: A3311CXX-L	
Date Code: 4Xx-XXL	
Package Type:SOP8	
Marking Type:Laser	無鉛
Total Q ty: 10,000	Lead Free

CARRIER TAPE AND REEL DIMENSIONS
SOP8

Note：

1． 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE 0.2 mm 。
2．COMBER NOT TO EXCEED 1 mm IN 100 mm 。
3．MATERIAL：ANTI－STATIC BLOCK ADVANTEK POLYSTYRENE 。
4． A_{0} AND B_{0} MEASURED ON A PLANE 0.3 mm ABOVE THE BOTTOM OF THE POCKET 。
5． K_{0} MEASURED FROM A PLANE AN THE INSIDE BOTTOM OF THE POCKET TO THE TOP SURFACE OF THE CARRIER

6．POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET，NOT POCKET HOLE 。

[^0]: * The 100Ω resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.

