
 
 

 

Solutions for LCD TV Super IP Applications 

 

By Simon Lin and Stephen Li, Fairchild Semiconductor 

 

Abstract：：：： Super inverters or high voltage inverters for LCD TVs continue to draw a 

tremendous amount of market attention due to their high efficiency and lower cost.  

This article conducts a circuit analysis and reviews the practical design considerations 

for Super IP converters in a 26 inch LCD TV application.  It also explores 

transformer and circuit design in LCD TV applications. 

   1. Conventional Block vs. Super IP Block 

In today’s LCD TV inverter designs, designers are usually seeking solutions that offer 

high efficiency, but at minimal cost. With conventional topologies, it is difficult to 

improve the efficiency without increasing the cost. As a result, Super inverters or high 

voltage inverters have been offered as a viable solution since these products save the 

main output’s rectification circuit. There are many different types of Super IP 

topologies, but this paper will focus on one of the topologies shown in Figure 1, 

which is suitable for a 26” 4 U-shaped lamps LCD TV.  

 

Figure 1. Super IP LCD TV Power Block 

 

In the above Super IP block (Figure 1), the power stage and inverter stage have been 

combined into one stage to improve the total efficiency and save the cost. The half- 

bridge block supply directly comes from the primary side of PFC 380V output, and 
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T2 works as the primary side and secondary side isolation transformer. The resonant 

tank circuit, which is made of series cap, T2, T3, T4, T5 & T6 as well as CCFL, 

converts the square-wave voltage to a sinusoidal output to drive the CCFL. 

     2. Current Balance 

Currently, U-shape lamps are commonly adopted by panel suppliers to reduce cost 

and power losses. However, for both terminals P1 and P2 of the U-shape lamp 

require operating in high voltage, it is very difficult to sense the lamp current, since 

you cannot directly measure the lamp’s current by insert a sensing resistor in a series 

with a lamp. And it is also difficult to control the 4 U-shape lamps’ current balance 

due to the difference of lamp impedance. 

 

An inverter circuit consists of an inverter transformer, inside secondary side leakage 

inductance, lamp operation impedance and resonant caps as well as the lamp parasitic 

cap Clamp. Here, the lamp operation impedance is simplified as a resistor Rlamp. 

Figure 2 shows the lamps’ current value with frequency variation. 

 

It is interesting that the lamp current RMS value meets together at f0 (resonant point) 

while the Rlamp in Figure3 is varied from 100K to 1Mohm. The f0 (resonant point) is 

decided by the L3 and Clamp, C9 and C10. It means that we can easily get current 

balance if the operating frequency is close to
0f .  

 

Figure 2. Lamp Current Vs Frequency, Rlamp 
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Figure 3. Simplied RCL tank circuit 

 

The circuit in Figure 3 is a simplified inverter resonant circuit. It consists of inverter 

transformer leakage inductance L, and C which is made by lamp parasitic cap 

paralleled with outside caps, and Lamp equivalent resistor R. Then the lamp current 

transfer function I(R) is expressed as below. 
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If 2ω LC=1, then the )(ωRI =
Lj

VS

ω

ω)(
, which is not related with R lamp value, we can 

make constant current inverter. The Lamp current RMS value is decided by the Vs, the 

inverter transformer leakage inductance L and C value. And we also learn the current 

curve around 
LC

f
π2

1
0 = is more closer , if the 

L

R
Q

ω
=  is more smaller.  



 
 

 

        3. A Half-Bridge MOSFET Switching Feature 

Another issue is that the half-bridge MOSFETs’ turn-on spike. Figure 4 is the simulation 

waveform with a small duty cycle. There is big current spike when high side MOSFET 

(S1) or low side MOSFET (S2) turn on. The turn on loss of S1 and S2 is very big and the 

efficiency is not good. Switching noise is also a big challenge since it can negatively 

impact the overall system reliability.  

 

First, assuming the half-bridge load is inductive and the current waveform lags behind 

with Voltage waveform, D6 is the High side MOSFET S1 body diode, and D7 is the low 

side MOSFET S2 body diode. 

 

t0->t1: Before t<t0 , S2 was turning on, and the transformer primary current IR65 was 

negative, at t=t0, S2 is turned off, causing the current IR65 to charge C46 and discharge 

C45, and the switching node Vs voltage are charging to 380V+0.7V@t1. 

 

t1->t2: D6 starts to turn on, the transformer primary side current charge the 380VDC 

input power and the current reduce to 0@t2. 

 

t2->t3: The D6 turns off, the resonant between C15,TX6 primary side inductance, R65 

and C45/C46 start, the switching node Vs voltage reduces to negative voltage make D7 

turn on first, then the Vs voltage become positive. 

 

t3->t4: The dead time finish, the high side gate drive turns on the MOSFET. There is a 

large current spike conducted at MOSFET IDS. 

 

To reduce the current spike, we need to increase the V7 and V8 turns on duty to close to 

50% to make the S1 and S2 ZVS. Then we can get square-wave voltage at the half- 

bridge switching node. On the other hand, we use Fairchild’s FRFET to reduce the 

MOSFET body diode recovery during switching transition time to enhance the inverter 

ruggedness even in hard-switching conditions. 
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Figure 4. Operating Waveform 

 

4. Fairchild Production Ready Board 

Figure 5 is a Fairchild total solution for a 26” 4 U-shaped lamps LCD TV block 

diagram. 
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Figure 5.Super IP Fairchild Block Diagram 
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The specifications for this circuit were: 

- Lamps typical operating voltage: 1920VRMS 

- Lamps typical operating current: 7.5mARMS 

- Lamps starting voltage: 3180Vrms@ Ta = 0 ºC 

- Lamps typical operating frequency: 56Khz 

- Backlight typical power consumption: 54W 

- Output 12V/3A for Audio Amp, 5V/3A for USB. 

- Standby power<0.75W@AC240V, with 5V Standby /0.2A for MCU 

- Open Lamp Protection, Lamp Short protection, Lamp over voltage protection 

- Current balance :<+/-10% 

 

The Backlight PWM IC FAN7313 was selected as it provided all the control functions, 

such as soft start, open lamp regulation, open lamp protection, over voltage protection, 

short circuit protection, UVLO, and synchronization circuit with an external signal for 

a series parallel resonant converter. At the same time, external component count is 

minimized and system cost is reduced by integration. It also supports analog and burst 

dimming modes of operation. 

 

The FAN7313 provides all the control functions for a series parallel resonant 

converter as well as a pulse width modulation (PWM) controller to develop a supply 

voltage.   
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 Figure 6. FAN7313 Backlight Super IP circuit 

5. Design procedure 



 
 

 

1) Set first stage Transformer T4 spec. 

T4 isolates the primary side ground and secondary side ground, and convert 380V 

PFC high voltage to a middle square voltage +/-80V to drive secondary transformer. 

And T4 primary inductance should be large enough, so that the C50 and T4 primary 

resonant frequency are far smaller than the operating frequency 56K and the tank 

circuit will be inductive load for the half-bridge converter to achieve ZVS. 

First, we choose C50=0.47uF/400V, set C50 and T4 primary inductance L resonant 

frequency to 7kHz, which is lower than the operating frequency 56khz. T4 primary 

inductance is  
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Choose T4 primary inductance = 1mH, and EER28L core, with 282 mmA e = , The 

T4 primary minimum turns is 
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We choose Np=60turns, T4 primary secondary turns is 
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We choose Ns=26turns, so secondary output voltage is  
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2) Set Second stage Transformer T5 spec. 

T5, T6, T7, T8 are same transformers to convert the square voltage to square-wave 

voltage and then to a sinusoidal output to drive the CCFL.  

First, we set the secondary resonant circuit frequency ffff0=65kHz,Q=1, from (2.2), the 

leakage inductance is  
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we chose 
lL =0.6H, and EEL17 core, with 222 mmA e = , T5 primary minimum 

turns is 
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Transfer the T5 input square-waveform to sinusoidal wave, the fundamental 

sinusoidal wave RMS Voltage is  
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From (2.3), the transformer turn ratio is  
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Regarding minimum primary turns, minimum turns ratio and leakage inductance, we 

can then determine primary turns, turns ratio and the gap of core to get the required 

leakage inductance. For this application, the number of primary turns is 178Ts and 

that of the secondary turns is 4200Ts whereas the Turns ratio is 23.6. 

3) Determine The Required Output Capacitance C51, C77 

Assume a parasitic capacitance per U shape lamp is 5pF. Each parasitic capacitance is 

effectively in paralleled with the output capacitors. Then the output capacitor C51 is 
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we choose C51 & C77=10pF. 



 
 

 

 

Summary 

With the consumer demand for highly efficient and cost-effective LCD TVs, high 

voltage inverters need to provide efficiency at a minimal cost. This article explored an 

innovative solution that combines the power stage and inverter stage without a 

conventional DC-DC block after the PFC block.  By using this advanced topology, 

LCD TV system efficiency and reliability were dramatically increased, while overall 

system cost was reduced. 
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