

二功能平均电流型 LED 恒流驱动器

■ 产品概述

LN2516 是一款外围电路简单,采用自主知识产权的 VFPWM 连续工作模式,适用于 6-100V 全电压范围的非隔离式恒流 LED 驱动芯片。

LN2516 采用了 PWM 工作模式,在应用中可以采用较小值的电感,可以有效节省整机空间。LN2516 通过对 MODE 端口进行控制实现二功能切换。MODE 悬空时为高亮模式,MODE 接高时为低亮模式,其中低亮电流为高亮电流的 50%。

■ 用途

- 直流或交流输入 LED 驱动器
- RGB 背光 LED 驱动
- 电动自行车照明
- 汽车照明等

■ 订购信息

LN2516 ①23

项目	参数	符号	描述	
1)	封装形式	S	eSOP-8	
2	* 41.42.44.		正向	
	位 鱼 姍 巾	卷盘编带 L	反向	
3		Α	内置 13A MOSFET	
	内置 MOSFET 型号	型号 B 内置 5A MOSFET	内置 5A MOSFET	
		С	内置 3A MOSFET	

■ 管脚示意图和功能

管脚	管脚名	功能		
1	S	功率管源极		
2	CS	电流取样端,通过外接电阻到地来设置芯片的输出 电流		
3	VSS	芯片地		
4	MODE	低亮设置管脚		
5	NC	悬空脚		
6	DRV	内置功率管的漏端		
7	DRV	内置功率管的漏端		
8	VDD	芯片电源,内置8V稳压电路		

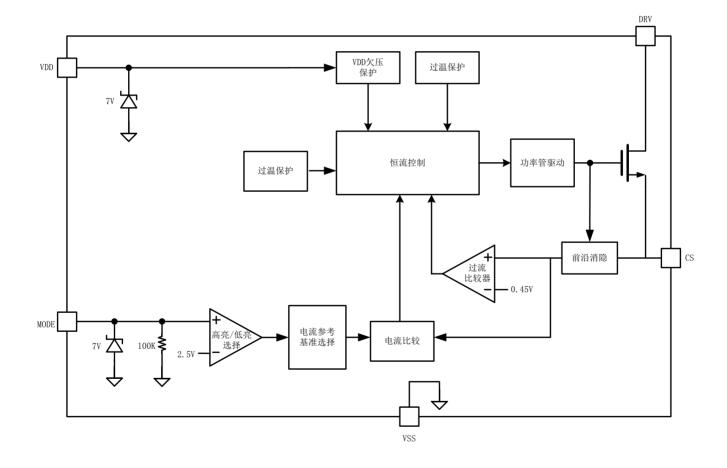
■ 产品特点

- 宽输入电压范围: 6V~100V
- 效率 88%
- 输出电流范围: 100mA~3.5A
- 电源内置 7V 稳压管
- 平均电流工作模式
- 内置抖频电路
- 内置 100V 功率管
- 过温时减小输出电流

■ 封装形式

eSOP8

■ 打印信息


• eSOP8

"16"代表 LN2516, "A"代表版号,公司内部可以根据实际情况进行修改 "①"可以为"A"、"N"、"B",代表内置 MOS 型号,对应 MOS 电流分别为 13A、 5A、3A

"*"组合为公司质量跟踪信息

■ 功能框图

■ 最大极限参数

项目	符号	极限范围	单位
电源端口耐压值	VDD	-0.3—10	٧
CS耐压值	V _{CS}	-0.3—6	V
MODE耐压值	V _{MODE}	-0.3—10	V

DRV输出电压	V_{DRV}	-0.3—110	V
电源端口电流	I _{VDD}	1—20	mA
存储温度范围	T _{STG}	-40—150	$^{\circ}$ C
工作结温	TJ	-40—150	$^{\circ}$ C
ESD HBM模式	V _{ESD}	4000	V

■ 电学特性参数

T_a=25℃

符号	项目	条件	最小	典型	最大	单位
V _{DD_clamp}	VDD 钳位电压		6	7	8	V
I _{UV}	VDD 欠压工作电流		-	40	60	uA
I _{DD}	静态工作电流	VDD=8V, GATE floating	200	400	600	uA
UVLO	VDD 欠压保护电压	VDD rising	4.1	4.5	4.9	V
Δ UVLO	欠压保护迟滞电压	VDD falling	-	0.5	-	V
R _{MODE}	MODE 下拉电阻		-	100	-	ΚΩ
V _{CS_AVG}	CS 端口基准电压	高亮模式	195	200	205	mV
V_{ILMT}	内部限流点		-	450	-	mV
THICCUP	短路打嗝时间	短路保护	-	600	-	us
T _{ON_MAX}	最大导通时间		-	60	-	us
T _{ON_MIN}	最小导通时间	CS=V _{CS_AVG} +30mV	-	1	-	us
T _{OFF_MAX}	最大关断时间		-	80	-	us
T _{OFF_MIN}	最小关断时间		-	1	-	us
T _{PRO}	过温调节温度		-	150	-	$^{\circ}$
V _{BVDS}	内置功率管击穿电压	I _D =250uA	100	-	-	V
	内置功率管导通电阻	LN2516SRA	-	60	-	- mΩ
Б		LN2516SRB	-	130	-	
R_{DS}		LN2516SRC	-	260	-	
		LN2516NR	-	530	-	1

■ 应用信息

● 芯片启动

系统上电后通过启动电阻对连接于电源引脚 VDD 的电容充电,芯片处于欠压保护状态时芯片 仅消耗约 40uA 的电流。当电源电压高于 VDD 欠 压保护电压后,芯片控制电路开始工作,直到 VDD 端口电压稳定达到 VDD 的钳位电压 8V 左右。

● 编程电流

在输出高亮时,输出电流:

I_{LED}=V_{CS_AVG}/R_{CS}, 其中 V_{CS_AVG} =200mV, R_{CS}为 CS 采样电阻。

● 电流设置

通过给 MODE 设置不同的电平,可以让芯片实现不同的功能。

当 MODE 悬空或者接地,芯片进入高亮工作模式; 当 MODE 接 VDD 时,芯片进入低亮工作模式。 低亮工作模式电流为高亮时的 50%。

● 电感选择

LN2516 工作在电感电流连续模式,电感电流平均值为 V_{CS_AVG}/R_{CS} (高亮),电感电流峰值为 1.25* V_{CS_AVG}/R_{CS} 。

在输入电压 VIN 及输出电压 VLED 都已知的条件下,电感值决定了系统的工作频率,电感值由如下公式计算:

$$L = \frac{2 \times V_{LED} \times (V_{IN} - V_{LED})}{V_{IN} \times I_{LED} \times f_{s}}$$

其中 fs 为开关频率,建议设置在 40KHz~120KHz 之间。电感取值较大时,可得到较优化的效率。 当采取无输出电容方案时,应选择稍小的电感 值,以减小LED上的电流纹波。

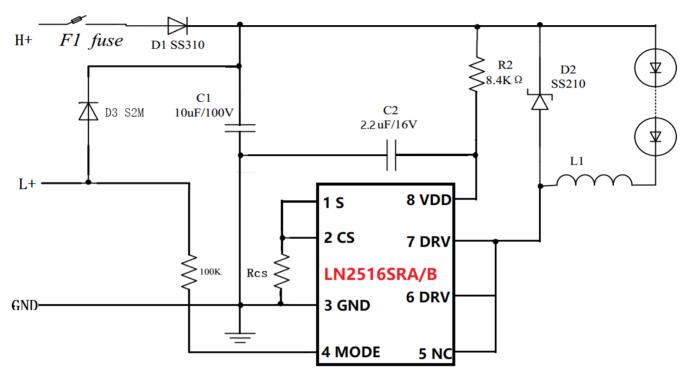
● 芯片内置功率管最小导通时间和最小关断时间 限制,都为 1us,当电感较小时,功率管导通时 间和关断时间可能达到这两个限制;芯片内置 功率管最大导通时间和最大关断时间限制,分 别为 60us 和 80us,当电感较大时,功率管导通 时间和关断时间可能达到这两个限制。在选择 电感时,应尽量避免这两种情况发生。

● 短路保护

当出现 LED 短路时,系统会降低工作频率从而减小输入电流,此时系统工作在打嗝模式,打嗝周期为600us。

● 过温保护

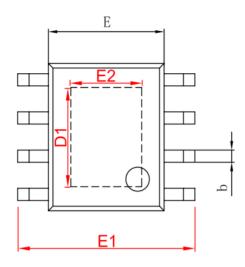
当芯片温度高于 150℃时, 系统会线性降低输出 电流, 从而减小芯片发热。

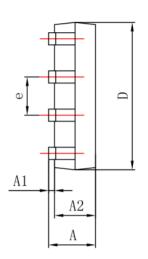

● PCB 设计

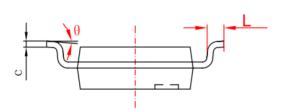
在设计 PCB 时应遵循以下原则:

VDD的旁路电容需要尽量靠近芯片的 VDD 和 VSS。电流采样的 CS 管脚需要单独的线连接到电流采样电阻一端,芯片地以及其他信号地应分头接到暴露电容的地端,即采用地线分离技术。减小功率环路的面积,可减小 EMI 辐射。功率管漏端走线与其它走线需满足爬电距离,建议≥1mm。建议增加芯片 CS 管脚的铺铜面积以增加散热。

■ 典型应用电路




LN2516SR 共地模式应用



■ 封装信息

eSOP-8

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0.069	
A 1	0. 100	0. 250	0. 004	0.010	
A2	1. 350	1.550	0. 053	0.061	
b	0. 330	0.510	0. 013	0.020	
С	0. 170	0. 250	0. 006	0.010	
D	4. 700	5. 100	0. 185	0. 200	
Е	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0.050 (BSC)		
L	0. 400	1. 270	0. 016	0.050	
θ	0°	8°	0°	8°	